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ON SECOND ORDER GRADIENT LIKE SYSTEM WITH
PARTIALLY LOJASIEWICZ GRADIENT NONLINEARITY

L. CHERGUI

Abstract. We establish the convergence to equilibrium states for global and
bounded solutions of some decoupled second order gradient like system with non-
linear damping and nonlinearity which satisfies partially the Lojasiewicz gradient
inequality. Moreover, we estimate the rate of convergence and we give a non
convergence result.

1. Introduction and main results

In this paper we investigate the long time behaviour, as time goes to infinity, of the
trajectories of the following second order gradient like system:

(1.1)




Ü(t) + ‖U̇(t)‖αp U̇(t) = G(V (t))∇F (U(t)),

V̈ (t) + ‖V̇ (t)‖αq V̇ (t) = F (U(t))∇G(V (t)),

U(0) = U0, V (0) = V0, U̇(0) = U1, V̇ (0) = V1,

t ∈ R+, U0, U1 ∈ Rp and V0, V1 ∈ Rq.

Here p, q ∈ N∗, α ∈ R+, and F : Rp → R, G : Rq → R are functions of class C2.

If n ∈ N∗, we denote by 〈·, ·〉n the canonical scalar product on Rn and the application
‖ · ‖n is its corresponding norm. Whenever A is a matrix in Mn(R), then ‖A‖n,n
denotes the norm of A which is subordinate to ‖ · ‖n, thus

‖A‖n,n = sup
‖x‖n≤1

‖Ax‖n.

Let us define also the distance between any two subsets B and D of Rn by

distn(B,D) = inf
(x,y)∈B×D

‖x− y‖n.

At first, let us consider the most simple case for the first order gradient systems.
Let N ∈ N∗, we consider the following first order differential system

(1.2) Ẋ(t) = ∇H(X(t)), t ∈ R+,
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where H : RN → R is a function of class C2 and X(t) ∈ RN . This type of system
(1.2) has been studied earlier in the literature, for its history we refer to [24, 11, 1,
16, 17]. Authors have proved if H is analytic then any global and bounded solution
of (1.2) converges, as time goes to infinity, to an equilibrium point which is in

SH = {u ∈ RN/∇H(u) = 0}.

Moreover, they obtained some estimates for the rates of convergence. Recall that
the basic argument in the proof of these results relies on the Lojasiewicz gradient
inequality, which is known also as the LG inequality.

Theorem 1. ([21, 2]) If H : RN → R is analytic, then for any y ∈ SH there exist
θy ∈]0, 12 ], σy > 0 and Cy > 0 such that

∀x ∈ RN , ‖x− y‖N < σy ⇒ ‖∇H(x)‖N ≥ Cy|H(x)−H(y)|1−θy .

Let us remark that if the LG inequality is satisfied for some θy ∈]0, 1
2
], it is also

satisfied for any θ̃ ∈]0, θy] in a possibly sufficiently small ball centered on y and may
be another constant Cy. If y is not in SH , the inequality becomes trivial since H is
of class C1.

After, the most of results concerning the first order gradient system have been
extended in [14, 10, 5, 6] for the following second order gradient like system:

(1.3) Ẍ(t) + ‖Ẋ(t)‖αNẊ(t) = ∇H(X(t)), t ∈ R+.

In classical Mechanics, the motion of a system with a finite number of degree of
freedom is generally governed by a second order differential system. The above sys-
tem (1.3) may be seen as a qualitative model for the motion of a material point
subject to gravity and some nonlinear damping, constrained to evolve on the graph
of H. For this view, we refer to [4, 9] and references therein. For the importance
and the applications of this type of system in Optimization and many other related
dynamical systems, we refer the reader to [7, 8, 25].

In the case when the damping is linear and H is analytic, the system (1.3) has been
studied first by Haraux and Jendoubi in [14]: when (α = 0), convergence of all
global and bounded solutions of (1.3) is established. In [14], authors estimate also
the rate of decaying for such solutions. The situation becomes more difficult when
the damping term is nonlinear. In [10], the problem (1.3) was studied in the case
α > 0 and H is analytic having a uniform Lojasiewicz exponent θH which depends
only on the function H, see [2, 18, 23]. Precisely, it has been proved in [10] that a
weak dissipatin (α > 0) can always stabilize global and bounded solution of (1.3).

In fact, if α ∈ [0,
θH

1− θH
[ there exists y ∈ SH such that

lim
t→+∞

(‖X(t)− y‖N + ‖Ẋ(t)‖N = 0.
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Moreover, we have the following estimate for the rate of convergence

lim
t→+∞

(‖X(t)− y‖N + ‖Ẋ(t)‖N � O(t
− θH−(1−θH )α

1−2θH+(1−θH )α ).

However, all these convergence results can fail whenever the function H is supposed
of class C∞. In [22], Palis and De Melo have proved that there exists a nonlinearity
H ∈ C∞(R2,R) and a bounded solution of the first order gradient system (1.2) for
which the w-limit set is the unit circle of R2. In [3, 20], the non-convergence result
of Palis and De Melo [22] has been extended to the second order problem (1.3) with
α = 0.

Let N = p + q, if necessary RN is viewed as Rp × Rq. We can see clearly that the
problem 1.1 is a second order gradient like system associated to the nonlinearity

H : RN → R, H(u, v) = F (u)G(v).

In fact, if X =

(
U

V

)
then the system (1.1) can be viewed as the following:

Ẍ(t) +

(
‖U̇(t)‖αp 0

0 ‖V̇ (t)‖αq

)
Ẋ(t) = ∇H(X(t)).

The system (1.3) can be viewed also as

Ẍ(t) +

(
(‖U̇(t)‖2p + ‖V̇ (t)‖2q)

α
2 0

0 (‖U̇(t)‖2p + ‖V̇ (t)‖2q)
α
2

)
Ẋ(t) = ∇H(X(t)).

So, it is interesting and useful for us that the nonlinear dissipatin of our problem
(1.1) is weaker than that dissipatin considered in (1.3).

In this paper, our aim is to prove that functions such as H(u, v) = F (u)G(v) and
which satisfies partially the LG inequality can produce also convergence for global
and bounded solutions of (1.1). For that we suppose that F satisfies the LG in-
equality. Let

SF = {a ∈ Rp/∇F (a) = 0},
So, for all a ∈ SF , there exist θa ∈]0, 12 ], Ca > 0 and σa > 0 such that

(1.4) ∀u ∈ Rp, ‖u− a‖p < σa ⇒ ‖∇F (u)‖p ≥ Ca|F (u)− F (a)|1−θa .

In order to establish the convergence of any global and bounded solution (U, V )
of (1.1). It is useful to suppose that F has a uniform Lojasiewicz exponent with
respect to the w−limit set of the solution (U, V ) and not necessary to be uniform with
respect to SF . The following result makes possible the existence of such exponent
uniformly on any compact and connected subset of SF .
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Proposition 1. ([5]) Let L : Rp → R be a function of class C1. Let Γ be a compact
connected subset of SL = {x ∈ Rp,∇L(x) = 0}. We assume that (1.4) holds for the
function L. Then we have:

• L takes a constant value LΓ on Γ.
• There exist µ > 0, θΓ ∈]0, 1

2
] and CΓ > 0 which are uniform with respect to Γ

such that

∀u ∈ Rp, distp(u,Γ) ≤ µ ⇒ ‖∇L(u)‖p ≥ CΓ|L(u)− LΓ|1−θΓ .

As in some existing papers on the convergence for gradient like systems, see [14, 10,
5, 6], we restrict our study for the cases in which the system (1.1) admits a strict
Lyapunov function. So, in order to develop classical Lojasiewicz-Lyapunov method,
it is useful to take a limiting point (a, b) of the solution (U, V ) and then we make
the change of the variable u by a+w. In that case, the function F will be replaced
by the function L(w) = F (a+ w)− F (a). Hence, the system (1.1) becomes

(1.5)

{
Ẅ (t) + ‖Ẇ (t)‖αp Ẇ (t) = G(V (t))∇L(W (t)),

V̈ (t) + ‖V̇ (t)‖αq V̇ (t) = L(W (t))∇G(V (t)) + F (a)∇G(V (t)).

We note the appearance of the term F (a)∇G(V (t)) in the second differential equa-
tion of the new system (1.5). This gradient term requires us to suppose that function
G satisfies also the LG inequality near the point b. Let us remark that until now
it is unknown if F and G satisfies separately the LG inequality, then convergence
for the global and bounded solutions of the problem (1.1) holds. In the sequel, we
assume

(1.6) SF ⊂ ZF = {u ∈ Rp/F (u) = 0}.
Under this assumption, we have

(1.7) SF × Rq ⊂ SH = {(u, v) ∈ RN/G(v)∇F (u) = F (u)∇G(v) = 0}.
In this paper our preliminary results are the following:

Theorem 2. For any initial data (U0, V0, U1, V1) ∈ RN × RN , there exists a unique
local solution for the second order differential system (1.1).

Remark 1. The above Theorem shows the existence of global solution for the Cauchy
problem (1.1), at least whenever the initial data is small enough: this is a pure result
from the Cauchy-Lipshitz Theorem which is based on fixed Theorem arguments.

Now, let us define

Pu : (u, v) ∈ RN → u ∈ Rp and Pv : (u, v) ∈ RN → v ∈ Rq.

We define also the w-limit set of any solution (U, V ) of the main problem (1.1) by

W (U, V ) = {(a, b) ∈ RN such that ∃tn → +∞ and (U(tn), V (tn)) → (a, b)}.
Similarly, we define separately

W (U) = {a ∈ Rp such that ∃rn → +∞ and U(rn) → a}.
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and

W (V ) = {b ∈ Rq such that ∃sn → +∞ and V (sn) → b}.
Hence, we have the following results:

Proposition 2. For any solution (U, V ) ∈ W 2,∞(R+,RN) of problem (1.1), we have

(1.8) lim
t→+∞

distN((U(t), V (t)),W (U, V )) = 0,

(1.9) W (U, V ) ⊂ W (U)×W (V ),

(1.10) Pu(W (U, V )) = W (U) and Pv(W (U, V )) = W (V ).

Remark 2. In general, for second order differential system, the inclusion (1.9) may
be strict. Indeed, the trajectory (U(t) = cos t, V (t) = sin t), t ∈ R+, is a solution for
the following ordinary differential system{

Ü(t) + ‖U̇(t)‖α2 U̇(t) = −U(t)− V (t),

V̈ (t) + ‖V̇ (t)‖α2 V̇ (t) = U(t)− V (t),

and W (U)×W (V ) = [−1, 1]× [−1, 1], while W (U, V ) is the unit circle of R2.

Proposition 3. For any solution (U, V ) ∈ W 2,∞(R+,RN) of problem (1.1), we have

(1.11) lim
t→+∞

{‖U̇(t)‖p + ‖V̇ (t)‖q} = 0,

(1.12) The set W (U, V ) is a compact and connected subset of SH ,

(1.13) lim
t→+∞

distN((U(t), V (t)), SH) = 0.

From (1.13), we deduce that global and bounded solutions of system (1.1) approaches
the set SH as times goes to infinity. The question is then to determine whether or
not it actually converges to a point in SH . The main results of this paper are the
following:

Theorem 3. Assume that (1.4) and (1.6) hold. Let (U, V ) ∈ W 2,∞(R+,RN) a
solution of system (1.1), such that for some δ ∈]0, 1] and Tδ ∈ R+, we have

(1.14) ∀t ≥ Tδ, |G(V (t))| ≥ δ.

Then

(1.15) the set Γ := W (U) is compact connected subset of SF .

In addition, if
α

α + 1
< θΓ, equivalently α <

θΓ
1− θΓ

, where θΓ is given by Proposition

1, then there exists (a, b) ∈ SF × Rq such that

lim
t→+∞

{‖U̇(t)‖p + ‖V̇ (t)‖q + ‖U(t)− a‖p + ‖V (t)− b‖q} = 0.
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If the function G itself satisfies

(1.16) ∃δ ∈]0, 1]/∀v ∈ Rq, |G(v)| ≥ δ.

Then, the following corollary derives obviously from Theorem 3.

Corollary 1. Assume that (1.4), (1.6) and (1.16) hold. Let (U, V ) ∈ W 2,∞(R+,RN)

be a solution of system (1.1). If α <
θΓ

1− θΓ
, then there exists (a, b) ∈ SF ×Rq such

that
lim

t→+∞
{‖U̇(t)‖p + ‖V̇ (t)‖q + ‖U(t)− a‖p + ‖V (t)− b‖q} = 0.

Therefore, the weak dissipatin of our problem (1.1) does not prevent global and
bounded solution to be stabilized under the effect of partially LG restoring term. In
the next result, we estimate the rate of convergence.

Theorem 4. Under assumptions of Theorem 3, there exists a constant C > 0 such
that for all t ∈ R+, we have

‖U̇(t)‖p + ‖V̇ (t)‖q + ‖U(t)− a‖p + ‖V (t)− b‖q ≤ C(1 + t)
− θΓ − (1− θΓ)α

1− 2θΓ + (1− θΓ)α .

In the sequel, the paper is organized as follows: in section 2 we give proofs of
Theorem 2, Proposition 2 and Proposition 3. In section 3 we study the asymptotic
behavior for global and bounded solutions of the main problem (1.1). In fact, we give
the proof of Theorem 3. Section 4 is devoted to estimate the rate of convergence,
for that we give the proof of Theorem 4. In the rest of this paper, we give in section
5 a non convergence result.

2. Preliminary results

2.1. Proof of Theorem 2. The system (1.1) is equivalent to the first order dif-
ferential system Ẏ (t) = R(Y (t)), tR+, where Y (t) = (U(t), V (t), U̇(t), V̇ (t)) and
R : R2N → R2N is the function defined by

R(u, v, w, z) = (w, z,G(v)∇F (u)− ‖w‖αpw, F (v)∇G(u)− ‖z‖αq z).
Our aim now is to prove that R satisfies the local Lipshitz condition on R2N . Since F
and G are functions of class C2, then (u, v) → G(v)∇F (u) and (u, v) → F (u)∇G(v)
are functions of class C1. So, these functions satisfies the local Lipshitz condition
on Rp × Rq. In addition, the function w → ‖w‖αpw satisfies the Lipshitz condition
on any compact subset of Rp which does not contains 0Rp . Fortunately, near ORp

this function is tangent to zero, hence its differential at 0Rp is zero. Consequently,
the function w → ‖w‖αpw satisfies the local Lipshitz condition on Rp. Similarly, we
have the same result for the function z → ‖z‖αq z on Rq. Therefore, we deduce that

the function R satisfies the local Lipshitz condition on R2N . Then, by using the
Cauchy-Lipshitz Theorem: there is a unique local solution for the problem (1.1) for
every initial data (U0, V0, U1, V1) ∈ R2N .
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2.2. Proof of Proposition 2. At first, let us suppose that (1.8) does not happen,
then there exist ε0 > 0 and a sequence (tn)n∈N such that

(2.1) ∀n ∈ N, tn ≥ n and distN((U(tn), V (tn)),W (U, V )) > ε0.

Knowing that (U(tn), V (tn))n∈N is a bounded sequence in RN , then there exists a
subsequence (U(tϕ(n)), V (tϕ(n)))n∈N which converges to some point (a, b) ∈ W (U, V ).
So, when n goes to the infinity in (2.1), we get distN((a, b),W (U, V )) > ε0. This
contradicts the fact that (a, b) ∈ W (U, V ). Thus the first assertion (1.8) is proved.
Secondly, if we take (a, b) ∈ W (U, V ) then there exists a sequence of time (tn)n∈N
such that (U(tn), V (tn))n∈N converges to (a, b). Then, separately each one of the
two sequences (U(tn))n∈N and (V (tn))n∈N converges, respectively to a and b. Hence,
we have a ∈ W (U) and b ∈ W (V ) which implies that (a, b) ∈ W (U) × W (V )
and then assertion (1.9) is proved. Now, we have to prove (1.10). For that, we
take for example a ∈ W (U) then there exists rn → +∞ such that U(rn) → a.
Knowing that (V (rn))n∈N is a bounded sequence of Rq, there exists then a sub-
sequence (V (tϕ(n)))n∈N which converges to some b ∈ W (V ). So, the sequence
(U(tϕ(n)), V (tϕ(n)))n∈N converges to (a, b), then (a, b) ∈ W (U, V ) and a = Pu(a, b).
This proves thatW (U) ⊂ Pu(W (U, V )). Whenever it is obvious that Pu(W (U, V )) ⊂
W (U), then the equality holds. In a similar way, we prove the second assertion
Pv(W (U, V )) = W (V ).

2.3. Proof of Proposition 3. At the beginning, we are going to prove the as-
sertion (1.11). Let (U, V ) ∈ W 2,∞(R+,RN) be a solution of the system (1.1). So,
we multiply, by mean of the corresponding scalar product, the equations of (1.1)
respectively by U̇(t) and V̇ (t). Then by integrating over [0, t], we obtain

(2.2)




1

2
‖U̇(t)‖2p −

1

2
‖U1‖2p +

∫ t

0

‖U̇(s)‖α+2
p ds =

∫ t

0

G(V (s))(F (U(s)))′ds,

1

2
‖V̇ (t)‖2q −

1

2
‖V1‖2q +

∫ t

0

‖V̇ (s)‖α+2
q ds =

∫ t

0

F (U(s))(G(V (s)))′ds.

By the formula (FG)′ = GF ′ + FG′ and equations (2.2), we get∫ t

0

{‖U̇(s)‖α+2
p + ‖V̇ (s)‖α+2

q }ds =[G(V (s))F (U(s))]t0 +
1

2
‖U1‖2p +

1

2
‖V1‖2q

− 1

2
‖U̇(t)‖2p −

1

2
‖V̇ (t)‖2q.

This implies
t → ‖U̇(t)‖α+2

p + ‖V̇ (t)‖α+2
q ∈ L1(R+).

Using the fact that (Ü , V̈ ) ∈ L∞(R+,RN), we get t → ‖U̇(t)‖α+2
p + ‖V̇ (t)‖α+2

q is
uniformly continuous on R+, obviously (1.11) holds.
Now, in order to prove the assertion (1.12), we recall that

W (U, V ) =
⋂
s>0

⋃
t≥s

{(U(t), V (t))}.
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This implies that the set W (U, V ) is a compact and connected subset of RN , see [13]
for a simple proof. Next, let (a, b) ∈ W (U, V ) and tn → +∞ such that U(tn) → a
and V (tn) → b. Writing

G(b)∇F (a) =

∫ 1

0

G(b)∇F (a)ds

= lim
n→+∞

∫ 1

0

G(V (tn + s))∇F (U(tn + s))ds

= lim
n→+∞

∫ 1

0

(−Ü − ‖U̇‖αp U̇)(tn + s)ds

= lim
n→+∞

{−U̇(tn + 1) + U̇(tn)−
∫ tn+1

tn

‖U̇‖αp U̇(s)ds}

= 0.

Simultaneously and in the same way we obtain F (a)∇G(b) = 0. Then

(2.3) (a, b) ∈ W (U, V ) ⇒

{
G(b)∇F (a) = 0

F (a)∇G(b) = 0.

Hence, the w-limit set W (U, V ) is a subset of SH . This complete the proof of (1.12).
It remains now to prove the last assertion (1.13). Since we have W (U, V ) ⊂ SH ,
then

distN((U(t), V (t)), SH) ≤ distN((U(t), V (t)),W (U, V )).

Let t goes to infinity, we get

(2.4) lim
t→∞

distN((U(t), V (t)), SH) = 0,

and then (1.13) is proved.

3. Convergence result: Proof of Theorem 3

First, let us prove the assertion (1.15). Writing

W (U) =
⋂
s>0

⋃
t≥s

{(U(t))}.

Then, the set Γ := W (U) is a compact and connected subset of Rp, see [13]. By
using (1.14), we have

(a, b) ∈ W (U, V ) ⇒ |G(b)| ≥ δ > 0.

Together with (2.3), implies that

W (U, V ) ⊂ SF × Rq.

When combined with Pu(W (U, V )) = W (U), see (1.10), this yields

Γ = W (U) ⊂ SF .
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Thus, assertion (1.15) is proved.
In the rest of this section, we are going to prove the convergence part of our Theorem
3. From (1.4), the function F satisfies the LG inequality. Since that Γ is a compact
and connected subset of SH , then by applying Proposition 1, we get: there exist

some real constants µ > 0, CΓ > 0, θΓ ∈]0, 1
2
] and FΓ such that

∀u ∈ Rp, distp(u,Γ) ≤ µ ⇒ ‖∇F (u)‖p ≥ CΓ|F (u)− FΓ|1−θΓ .

From assumption (1.6), we have FΓ = 0. Let θ := θΓ, the previous inequality
becomes

(3.1) ∀u ∈ Rp, distp(u,Γ) ≤ µ ⇒ ‖∇F (u)‖p ≥ CΓ|F (u)|1−θ.

Once again, by using (1.10), we have

distN((u, v),W (U, V )) ≤ µ ⇒ distp(u,Γ) ≤ µ.

Combining with (3.1), it follows that

(3.2) ∀(u, v) ∈ RN , distN((u, v),W (U, V )) ≤ µ ⇒ ‖∇F (u)‖p ≥ CΓ|F (u)|1−θ.

Since we have (1.14), from (1.8) and (1.11) there exists T ≥ Tδ such that for all
t ≥ T , we have
(3.3)

distN((U(t), V (t)),W (U, V )) ≤ µ, ‖U̇(t)‖p ≤ 1, ‖V̇ (t)‖q ≤ 1 and |G(V (t))| ≥ δ.

So, from (3.2) we get also

(3.4) ∀t ≥ T, ‖∇F (u)‖p ≥ CΓ|F (u)|1−θ.

The previous inequality is crucial in what follows. At this step, let ε be a positive
real number which will be fixed later and define for all t ∈ R+ the functions

E(t) =
1

2
‖U̇(t)‖2p +

1

2
‖V̇ (t)‖2q − F (U(t))G(V (t)),

and

K(t) = E(t)− ε‖G(V (t))∇F (U(t))‖αp 〈G(V (t))∇F (U(t)), U̇(t)〉p.
Our aim now is to prove that K is a strict Lyapunov function, that means K(t)
is non increasing and the solution (U(t), V (t)) will be constant if K(t) vanishes at
some t. By differentiating E, we obtain for all t ∈ R+

E ′(t) =〈Ü(t), U̇(t)〉p + 〈V̈ (t), V̇ (t)〉q − 〈G(V (t))∇F (U(t)), U̇(t)〉p
− 〈F (U(t))∇G(V (t)), V̇ (t)〉q.

=〈Ü(t)−G(V (t))∇F (U(t)), U̇(t)〉p + 〈V̈ (t)− F (U(t))∇G(V (t)), V̇ (t)〉q
=〈−‖U̇(t)‖αp U̇(t), U̇(t)〉p + 〈−‖V̇ (t)‖αp V̇ (t), V̇ (t)〉q
=− ‖U̇(t)‖α+2

p − ‖V̇ (t)‖α+2
q .
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Now, we will differentiate the mixed term

M(t) := ‖G(V (t))∇F (U(t))‖αp 〈G(V (t))∇F (U(t)), U̇(t)〉p.
In the next, the calculation is valid only at those points where G(V )∇F (U) is not
zero. So, we have

M ′(t) =α‖G(V (t))∇F (U(t))‖α−2
p 〈(G(V (t))∇F (U(t)))′, G(V (t))∇F (U(t))〉p

〈G(V (t))∇F (U(t)), U̇(t)〉p + ‖G(V (t))∇F (U(t))‖αp 〈G(V (t))∇F (U(t)), Ü(t)〉p
+ ‖G(V (t))∇F (U(t))‖αp 〈(G(V (t))∇F (U(t)))′, U̇(t)〉p.

Since we have
Ü(t) = G(V (t))∇F (U(t))− ‖U̇(t)‖αp U̇(t),

and

(G(V (t))∇F (U(t)))′ = 〈∇G(V (t)), V̇ (t)〉q∇F (U(t)) +G(V (t))∇2F (U(t)).U̇(t).

Then, we get

M ′(t) =α‖G(V (t))∇F (U(t))‖α−2
p 〈∇G(V (t)), V̇ (t)〉q〈G(V (t))∇F (U(t)), U̇(t)〉p

〈G(V (t))∇F (U(t)),∇F (U(t))〉p + α‖G(V (t))∇F (U(t))‖α−2
p

〈G(V (t))∇F (U(t)), G(V (t))∇2F (U(t)).U̇(t)〉p〈G(V (t))∇F (U(t)), U̇(t)〉p
+ ‖G(V (t))∇F (U(t))‖αp 〈∇G(V (t)), V̇ (t)〉q〈∇F (U(t)), U̇(t)〉P
+G(V (t))‖G(V (t))∇F (U(t))‖αp 〈∇2F (U(t)).U̇(t), U̇(t)〉p
+ ‖G(V (t))∇F (U(t))‖α+2

p −G(V (t))‖G(V (t))∇F (U(t))‖αp‖U̇(t)‖αp
〈∇F (U(t)), U̇(t)〉p.

Replacing in K ′(t). We obtain

K ′(t) = −‖U̇(t)‖α+2
p − ‖V̇ (t)‖α+2

q − ε‖G(V (t))∇F (U(t))‖α+2
p

+ εG(V (t))‖G(V (t))∇F (U(t))‖αp‖U̇(t)‖αp 〈∇F (U(t)), U̇(t)〉p
− ε‖G(V (t))∇F (U(t))‖αp 〈∇G(V (t)), V̇ (t)〉q〈∇F (U(t)), U̇(t)〉p
− εG(V (t))‖G(V (t))∇F (U(t))‖αp 〈∇2F (U(t)).U̇(t), U̇(t)〉p
− εα‖G(V (t))∇F (U(t))‖α−2

p 〈G(V (t))∇F (U(t)), U̇(t)〉p〈∇G(V (t)), V̇ (t)〉q
〈∇F (U(t)), G(V (t))∇F (U(t))〉p − εα‖G(V (t))∇F (U(t))‖α−2

p

〈G(V (t))∇F (U(t)), U̇(t)〉p〈∇2F (U(t)).U̇(t), G(V (t))∇F (U(t))〉p.
Let

C1 = sup
t∈R+

‖∇F (U(t))‖p,C2 = sup
t∈R+

‖∇G(V (t))‖p,

C3 = sup
t∈R+

‖∇2F (U(t))‖p,p and C4 = sup
t∈R+

|G(V (t))|.



Variables exponent p(x)-Kirchhoff type problem with variable potential and convection 245
11

Using the Cauchy-Schwarz inequality, we get

K ′(t) ≤ −‖U̇(t)‖α+2
p − ‖V̇ (t)‖α+2

q − ε‖G(V (t))∇F (U(t))‖α+2
p

+
ε

2
‖G(V (t))∇F (U(t))‖αp‖U̇(t)‖αp{‖G(V (t))∇F (U(t))‖2p + ‖U̇(t)‖2p}

+
ε

2
C1C2‖G(V (t))∇F (U(t))‖αp{‖U̇(t)‖2p + ‖V̇ (t)‖2q}

+ εC3C4‖G(V (t))∇F (U(t))‖αp‖U̇(t)‖2p
+

εα

2
C1C2‖G(V (t))∇F (U(t))‖αp{‖U̇(t)‖2p + ‖V̇ (t)‖2q}

+ εαC3‖G(V (t))∇F (U(t))‖αp‖U̇(t)‖2p.

As we saw, the calculation is valid only at those points where G(V )∇F (U) is not
zero. However, near a point where G(V )∇F (U) = 0 the worst term

‖G(V )∇F (U)‖αp 〈G(V )∇F (U), U̇〉p

is tangent to zero, so its derivative is zero and the same final estimate holds true.
Our aim now is to prove that K is a non increasing function on the interval [T,+∞[.
From (3.3), we have

(3.5) ∀t ≥ T, ‖U̇(t)‖p ≤ 1 and ‖V̇ (t)‖q ≤ 1.

Then, we have for all t ≥ T

K ′(t) ≤ −‖U̇(t)‖α+2
p − ‖V̇ (t)‖α+2

q − ε

2
‖G(V (t))∇F (U(t))‖α+2

p

+
ε

2
C5‖G(V (t))∇F (U(t))‖αp‖U̇(t)‖2p +

ε

2
C6‖G(V (t))∇F (U(t))‖αp‖V̇ (t)‖2q.

Here C5 = 1 + (1 + α)C1C2 + 2C3C4 + 2αC3 and C6 = (1 + α)C1C2.
Using Young’s inequality, we get

‖G(V (t))∇F (U(t))‖αp‖U̇(t)‖2p ≤
1

4C5

‖G(V (t))∇F (U(t))‖α+2
p + (4C5)

α
2 ‖U̇(t)‖α+2

p ,

‖G(V (t))∇F (U(t))‖αp‖V̇ (t)‖2q ≤
1

4C6

‖G(V (t))∇F (U(t))‖α+2
p + (4C6)

α
2 ‖V̇ (t)‖α+2

q .

Then, we obtain

K ′(t) ≤{−1 +
ε

2
C5(4C5)

α
2 }‖U̇(t)‖α+2

p + {−1 +
ε

2
C6(4C6)

α
2 }‖V̇ (t)‖α+2

q

− ε

4
‖G(V (t))∇F (U(t))‖α+2

p .

So, by choosing ε small enough in the previous inequality, we get for all t ≥ T

(3.6) K ′(t) ≤ −1

2
‖U̇(t)‖α+2

p − 1

2
‖V̇ (t)‖α+2

q − ε

4
‖G(V (t))∇F (U(t))‖α+2

p .
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The inequality (3.6) shows that K is non increasing on [T,+∞[. Moreover, from
(1.11) and (1.6), we deduce

lim
t→∞

K(t) = 0.

If there exists t0 ≥ T such that K(t0) = 0, then K(t) = 0 for all t ≥ t0 and by using
inequality (3.6) we obtain U̇(t) = V̇ (t) = 0 for all t ≥ t0. This implies that (U, V )
is stationary and then convergent solution. If it is not the case, we assume in the
next that

(3.7) ∀t ≥ T,K(t) > 0,

and we will prove that t → ‖U̇(t)‖p is integrable on [T,+∞[. We have α <
θ

1− θ
,

then

β := θ − (1− θ)α > 0.

From (3.7), we have for all t ≥ T

(3.8) − 1

β
(K(t)β)′ =

−K ′(t)

{K(t)1−θ}1+α
.

Since the following elementary inequality

∀a, b ∈ R+, (a+ b)λ ≤ 2(aλ + bλ)

holds for any λ ∈ [0, 2], then by using Cauchy-Schwarz inequality, we get for all
t ∈ R+

(3.9) K(t)1−θ ≤ 4{‖U̇(t)‖2(1−θ)
p + ‖V̇ (t)‖2(1−θ)

q + |F (U(t))G(V (t))|1−θ

+‖U̇(t)‖1−θ
p ‖G(V (t))∇F (U(t))‖(α+1)(1−θ)

p }.
Once again by applying Young’s inequality, we get

‖U̇(t)‖1−θ
p ‖G(V (t))∇F (U(t))‖(α+1)(1−θ)

p ≤ ‖U̇(t)‖
1−θ
θ

p + ‖G(V (t))∇F (U(t))‖α+1
p .

Then, inequality (3.9) becomes

(3.10) K(t)1−θ ≤ 4{‖U̇(t)‖2(1−θ)
p + ‖V̇ (t)‖2(1−θ)

q + |F (U(t))G(V (t))|1−θ

+‖U̇(t)‖
1−θ
θ

p + ‖G(V (t))∇F (U(t))‖α+1
p }.

Since θ ∈]0, 1
2
], then

1− θ

θ
≥ 1 and 2(1 − θ) ≥ 1. Together with (3.5) implies that

for all t ≥ T we have

‖U̇(t)‖2(1−θ)
p ≤ ‖U̇(t)‖p, ‖V̇ (t)‖2(1−θ)

q ≤ ‖V̇ (t)‖q and ‖U̇(t)‖
1−θ
θ

p ≤ ‖U̇(t)‖p.

So, from (3.10), we get
(3.11)
K(t)1−θ ≤ 8{‖U̇(t)‖p+‖V̇ (t)‖q+|F (U(t))G(V (t))|1−θ+(C1C4)

α‖G(V (t))∇F (U(t))‖p}.
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Together (3.4) and the previous inequality implies that for all t ≥ T we have
(3.12)
K(t)1−θ ≤ C7{‖U̇(t)‖p+‖V̇ (t)‖q+|G(V (t))|1−θ‖∇F (U(t))‖p+‖G(V (t))∇F (U(t))‖p}.

Where C7 = 8(1 + (C1C4)
α + 1

CΓ
) > 0.

Now, Writing

‖G(V (t))∇F (U(t))‖α+2
p = |G(V (t))|θ(α+2){|G(V (t))|1−θ‖∇F (U(t))‖p}α+2.

From (3.3) we have

∀t ≥ T, |G(V (t))| ≥ δ.

Then, for all t ≥ T

‖G(V (t))∇F (U(t))‖α+2
p ≥ δθ(α+2){|G(V (t))|1−θ‖∇F (U(t))‖p}α+2.

Therefore, from (3.6) we have for all t ≥ T

−K ′(t) ≥ 1

2
‖U̇(t)‖α+2

p +
1

2
‖V̇ (t)‖α+2

q +
ε

8
‖G(V (t))∇F (U(t))‖α+2

p

+
ε

8
δθ(α+2){|G(V (t))|1−θ‖∇F (U(t))‖p}α+2.

We assume, if it is necessary, that ε is small enough such that C8 :=
ε

8
δθ(α+2) ≤ 1

2
,

Thus, the previous inequality becomes

−K ′(t) ≥ C8{‖U̇(t)‖α+2
p + ‖V̇ (t)‖α+2

q + {|G(V (t))|1−θ‖∇F (U(t))‖p}α+2

+ ‖G(V (t))∇F (U(t))‖α+2
p }.

Since that x → xα+2 is a convex function on R+, then

−K ′(t) ≥ C8

4α+1
{‖U̇(t)‖p + ‖V̇ (t)‖q + |G(V (t))|1−θ‖∇F (U(t))‖p

+ ‖G(V (t))∇F (U(t))‖p}α+2.

Together with (3.8) and (3.12), implies that for every t ≥ T and C9 :=
βC8

(4C7)α+1
,

we have

(3.13) −(K(t)β)′

C9

≥ ‖U̇(t)‖p + ‖V̇ (t)‖q + {|G(V (t))|+ |G(V (t))|1−θ}‖∇F (U(t))‖p.

Therefore, by integrating over any interval of time [T, τ ] we get

(3.14)

∫ τ

T

‖U̇(s)‖pds+
∫ τ

T

‖V̇ (s)‖qds ≤
1

C9

E(T )β < ∞.

Consequently, the application t → ‖U̇(t)‖p+‖V̇ (t)‖q is integrable on [T,+∞[. From
this derives the convergence of (U, V ) to an equilibrium point (a, b) ∈ W (U, V ) ⊂
SF × Rq.
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4. Rate of convergence: Proof of Theorem 4

Based on what we have in the proof of Theorem 3, we shall establish some suitable
differential inequalities. Next, by using the following Lemma (1), we obtain the
desired estimate.

Lemma 1. ([15]) Let f be a positive solution of the following differential inequality

f ′(t) + Cf(t)γ ≤ 0, ∀t ≥ 0.

If C > 0 and γ ≥ 1, then we have

(4.1) f(t) ≤

{
f(0)e−βt, ∀t ≥ 0,

( 1
C(γ−1)

t)−
1

γ−1 , ∀t > 0.

Let us gather some facts from the Proof of Theorem 3. We showed in (3.13) that
there exists T and a positive constant C9 such that for all t ≥ T , we have

(4.2) −(K(t)β)′

C9

≥ ‖U̇(t)‖p + ‖V̇ (t)‖q + {|G(V (t))|+ |G(V (t))|1−θ}‖∇F (U(t))‖p.

From (3.12), we have

K(t)1−θ ≤ C7{‖U̇(t)‖p+‖V̇ (t)‖q+|G(V (t))|1−θ‖∇F (U(t))‖p+‖G(V (t))∇F (U(t))‖p}.
Together with (4.2), gives

∀t ≥ T, (K(t)β)′ ≤ −C9

C7

K(t)1−θ = −C9

C7

(K(t)β)
1−θ
β .

Let

f(t) = K(t)β, C =
C9

C7

, γ =
1− θ

β
> 1 and C10 = (

1

C(γ − 1)
)−

1
γ−1 .

Then, by applying the Lemma 1 we obtain

(4.3) ∀t ≥ T,K(t)β ≤ C10t
− β

1− θ − β .

Now, by writing

‖U(t)− a‖p + ‖V (t)− b‖q ≤
∫ ∞

t

(‖U̇(s)‖p + ‖V̇ (s)‖q)ds,

and using (4.2), we get

∀t ≥ T, ‖U(t)− a‖p + ‖V (t)− b‖q ≤
1

C9

K(t)β.

Together with (4.3), implies

(4.4) ∀t ≥ T, ‖U(t)− a‖p + ‖V (t)− b‖q ≤
C10

C9

t
− β

1− θ − β .
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Similarly, we will estimate the speed of decay for the damping term. For that, by
using of the first equation of (1.1) we get

‖Ü(t)‖p ≤ ‖U̇(t)‖α+1
p + |G(V (t))|‖∇F (U(t))‖p.

From (3.5) we have

∀t ≥ T, ‖U̇(t)‖α+1
p ≤ ‖U̇(t)‖p.

Then

‖Ü(t)‖p ≤ ‖U̇(t)‖p + |G(V (t))|‖∇F (U(t))‖p.

Thanks to (4.2), we have

(4.5) ∀t ≥ T, ‖Ü(t)‖p ≤ − 1

C9

(K(t)β)′.

We have lim
t→+∞

‖U̇(t)‖p = 0, see (1.11), then

∀t ∈ R+, U̇(t) = −
∫ +∞

t

Ü(s)ds.

So, by using (4.5) and (4.3), we obtain for all t ≥ T

(4.6) ‖U̇(t)‖p ≤
∫ +∞

t

‖Ü(s)‖pds ≤
1

C9

K(t)β ≤ C10

C9

t
− β

1− θ − β .

It remains now to estimate the speed of decay for ‖V̇ (t)‖q. Together the second
equation of (1.1) and (3.5) implies

∀t ≥ T, ‖V̈ (t)‖q ≤ ‖V̇ (t)‖q + ‖F (U(t))∇G(V (t))‖q.

In order to develop calculation in the same way as previous, we shall establish
some new estimates for the term ‖F (U(t))∇G(V (t))‖q who appeared in the previous
inequality. For that, we introduce a new Lyapunov function

L(t) = K(t)− ε‖F (U(t))∇G(V (t))‖αq 〈F (U(t))∇G(V (t)), V̇ (t)〉q,

which is obtained by perturbation of K with the following mixed term

N(t) := ‖F (U(t))∇G(V (t))‖αq 〈F (U(t))∇G(V (t)), V̇ (t)〉q.
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By differentiating N(t) on all points such that F (U)∇G(V ) is not zero, we get

N ′(t) = α‖F (U(t))∇G(V (t))‖α−2
q 〈∇F (U(t)), U̇(t)〉p〈F (U(t))∇G(V (t)), V̇ (t)〉q

〈F (U(t))∇G(V (t)),∇G(V (t))〉q + α‖F (U(t))∇G(V (t))‖α−2
q

〈F (U(t))∇G(V (t)), F (U(t))∇2G(V (t)).V̇ (t)〉q〈F (U(t))∇G(V (t)), V̇ (t)〉q
+ ‖F (U(t))∇G(V (t))‖αq 〈∇F (U(t)), U̇(t)〉p〈∇G(V (t)), V̇ (t)〉q
+ F (U(t))‖F (U(t))∇G(V (t))‖αq 〈∇2G(V (t)).V̇ (t), V̇ (t)〉q
+ ‖F (U(t))∇G(V (t))‖α+2

q − F (U(t))‖F (U(t))∇G(V (t))‖αq ‖V̇ (t)‖αq
〈∇G(V (t)), V̇ (t)〉q.

Let
C11 = sup

t∈R+

|F (U(t))| and C12 = sup
t∈R+

‖∇2G(V (t))‖q,q.

Using the Cauchy-Schwarz inequality, we get

−εN ′(t) ≤ −ε‖F (U(t))∇G(V (t))‖α+2
q +

αε

2
C1C2{‖U̇(t)‖2p + ‖V̇ (t)‖2q}

+ (α + 1)εC10C11‖F (U(t))∇G(V (t))‖αq ‖V̇ (t)‖2q
+

ε

2
C1C2‖F (U(t))∇G(V (t))‖αq {‖U̇(t)‖2p + ‖V̇ (t)‖2q}

+
ε

2
C10‖F (U(t))∇G(V (t))‖αq ‖V̇ (t)‖αq {‖∇G(V (t))‖2q + ‖V̇ (t)‖2q}.

By similar computations to those that provided the inequality (3.6) and by choosing
ε small enough as for the inequality, we have

(4.7) L′(t) ≤ −1

2
‖U̇(t)‖α+2

p − 1

2
‖V̇ (t)‖α+2

q − ε

4
‖G(V (t))∇F (U(t))‖α+2

p

−ε

4
‖F (U(t))∇G(V (t))‖α+2

q .

Same arguments as in the proof of Theorem 3, the previous estimate holds true
for those points which satisfies F (U)∇G(V ) = 0. In the same way we establish a
similar inequality to (3.12). So, there exists an instant which is denoted also by T
such that for all t ≥ T

(4.8) L(t)1−θ � ‖U̇(t)‖p + ‖V̇ (t)‖q + {|G(V (t))|+ |G(V (t))|1−θ}‖∇F (U(t))‖p
+‖F (U(t))∇G(V (t))‖q.

By similar computations as for the inequality (3.13), we obtain for all t ≥ T

(4.9) −(L(t)β)′ � ‖U̇(t)‖p + ‖V̇ (t)‖q + {|G(V (t))|+ |G(V (t))|1−θ}‖∇F (U(t))‖p
+‖F (U(t))∇G(V (t))‖q.

Together (4.8) and (4.9), gives us

−(L(t)β)′ � L(t)1−θ = (L(t)β)
1−θ
β .
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Thanks to the Lemma 1, we have

(4.10) ∀t ≥ T, L(t)β � t
− β

1− θ − β .

From previous, we have for all t ≥ T

‖V̇ (t)‖q ≤
∫ +∞

t

‖V̈ (s)‖qds

≤
∫ +∞

t

{‖V̇ (s)‖q + ‖F (U(t))∇G(V (t))‖q}ds

� −
∫ +∞

t

(L(s)β)′ds � L(t)β.

Since we have (4.10), then

(4.11) ∀t ≥ T, ‖V̇ (t)‖q � t
− β

1− θ − β .

To finish now, let us gather (4.4), (4.6) and (4.11), then by changing constants if
necessary, results stated in Theorem 3 are completely proved for every t ∈ R+.

5. Non-convergence result

From Theorem 3 we derive the following result

Corollary 2. Suppose that the assumptions of the Corollary 1 holds. In addition,
we suppose that F satisfies (1.4) with a uniform Lojasiewicz exponent θ = 1

2
. Then,

for all α ∈ [0, 1[, every global and bounded solution (U, V ) of problem (1.1) converges
to an equilibrium point (a, b) ∈ SF × Rq.

In this section, we are interested in problem (1.1) when α = 1. Precisely, we show
the existence of non convergent solution even if the assumptions stated in Theorem
3 hold. For that, we make use of the following non convergence result:

Theorem 5. (see [13])
Let f be a locally Lipshitz function defined on R such that

(5.1)




f(x) < 0 for x < a,

f(x) = 0 for a ≤ x ≤ b,

f(x) > 0 for b < x.

Then, for every non constant and bounded solution of the following ordinary differ-
ential equation

ÿ(t) + |ẏ(t)|ẏ(t) + f(y(t)) = 0, t ∈ R+.

There exist sequences tn → +∞ and sn → +∞ such that y(tn) < a and y(sn) > b
for all n ∈ N.
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Let us define the following functions

F (x) =





−(x− a)2, if x ≤ a,

(x− b)2, if b ≤ x,

0, if x ∈ [a, b].

and

G(x) =





e(x−a)4 , if x ≤ a,

e(x−b)4 , if b ≤ x,

1, if x ∈ [a, b].

The function F satisfies assumptions (1.6) and (1.4) with θ =
1

2
. Also, the function

G satisfies (1.16) with δ = 1. We consider the following gradient like system

(5.2)





ü(t) + |u̇(t)|u̇(t) +G(v(t))(F ′)(u(t)) = 0,

v̈(t) + |v̇(t)|v̇(t) + F (u(t))G′(v(t)) = 0,

t ∈ R+.

The Theorem 5 shows that every component of a non constant and global solution
of (5.2) does not converge.
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